促销活动的有效性分析:只有充分了解客户,才能准确定位促销对象,提高针对性,降低活动成本。零售业通过广告、优惠券、各种折扣和让利的方式搞促销活动,以达到促销产品,吸引顾客的目的。用多维关联分析方法,通过比较促销期间的销售量和交易数量与促销活动前后的有关情况,认真分析促销活动的有效性,还可以分析出应该在什么时间,什么地点、以什么种方式、什么商品和对什么样的人进行促销活动,尽量避免企业资源的浪费,提高销售额。顾客忠诚度分析:零售企业通过办理会员卡、建立顾客会员制度的方式,来跟踪顾客的消费行为。通过对顾客会员卡信息进行数据挖掘,可以记录顾客的购买序列,将同一顾客在不同时期购买的商品分组,确定特定个体的兴趣、消费习惯、消费倾向和消费需求,由时间序列模式推断出相应消费群体或个体下一步的消费行为。序列模式挖掘用于分析顾客的购买趋势或忠诚度的变化,据此对价格和商品的花样加以调整和更新,以便留住老客户,吸引新客户。贴近业务实际、聚焦业务痛点,专注于难、痛、愁、急的问题。线上零售数据分析挖掘
零售商向客户提供一组产品时,针对每个用户都制定不同的价格来大化整体的收入。另外,该问题可以重新定义为提供定向折扣从而在基线价格上改变价格。价格差异被的应用在零售业并且存在非常多种显性和隐性的形式:优惠券,店铺级价格分区,和折扣都是价格差异的例子。价格区分与通过数量折扣来提升销售是相关的。动态定价能用价格差异的原则和模型来增量的调整价格。尽管我们在问题的定义中暗示了是细粒度的个体定价方式,但是这是非常极端的情况更多常见的方法是对大的客户分群设置不同的价格。线上数据分析归因分析衡量客户价值和客户创造利益的能力,识别高价值客户、维持客户、发展客户和挽留客户。
BI 工具或报表工具。这些工具大多只能统计、聚合、切片、下钻、大屏可视化等,看似很酷炫,实际挖得很浅,无法应对深度需求。 鉴于此,我们将基于新一代互联网技术、流式计算和人工智能技术,开发一套弹性、易用、简单、深度挖掘的敏捷数据挖掘 SaaS 系统。它具有以下特点: 1. 互联网、流式计算、AI 算法、下一代 IT 技术深度融合 2. 不是数据挖掘,更是价值挖掘。贴近业务实际、聚焦业务痛点,专注于难、痛、愁、急的问题。 3. 研发并落地前沿计算引擎,如时序预测引擎、组合与推荐引擎、个性化推荐引擎、潜客识别引擎、智能拟合引擎、线性回归与归因引擎、帕累托价值分析器、 RFM 客户价值分析器、渠道转化分析器等,且支持个性化功能定制 4. 页面友好、全模块化、一目了然 5. 先进的自动建模技术,无需懂技术,很低使用门槛,小白式操作 6. 与业务系统解耦,开箱即用,完全无侵入 7. 即使是私有部署,也可以和已有系统隔离,并支持弹性扩容 8. 每份结果都是一份有深度的小型咨询报告。
某种程度上,推荐技术的高度多样性在于一些实现推荐时遇到的挑战,如客户评分的稀疏性,计算的可扩展性,以及缺乏新物品和客户的信息。显然,我们无法在本节中综述哪怕一下部分方法和算法,而且在此处探讨这些也没有太多的意义,因为这样的综述俯拾皆是。相反我们将关注于驱动设计推荐系统的目标和效用函数,而基本上忽略这一问题的算法和技术侧的细节。从计量经济学的观点来看,推荐系统问题与电商和全渠道商业在很多零售领域的兴起带来销售品类的扩张是紧密相关。大的平类增加了很多非**产品,每一个产品的销售量和贡献的收入都是很少的,但是这个“长尾”的总体贡献是非常的。传统推荐技术如推广**的商品不能有效利用非**商品的潜力,这就需要更巧妙的推荐方法在数百万他或者她从未探索过的产品中对其进行引导。使用潜客识别引擎,帮您发现哪些人具有更高的营销成功率。
大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等,这些方法从不同的角度对数据进行挖掘。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。使用个性化推荐引擎,帮您为顾客推荐正确的商品。线上数据分析归因分析
无论您来自什么行业,数据驱动将触手可及,帮您紧跟时代和产业升级。线上零售数据分析挖掘
零售商准备一次促销活动,即对某个或者一组特定商品进行有时限的折扣。对促销活动的规划需要估计到下列有关的值: 哪些产品的库存需要避免在活动结束前缺货?什么样的价格会优化收入?价格可以考虑是一个恒定值或者是一个从活动开始到结束不同时间段的函数。我们将考虑库存水平是预先确定的,零售商试图计算优价格这种情况。这是时尚零售商在处理季节性清仓和款式翻新中遇到的典型问题。这一问题可以以不同的方式来定义,如将需求预测和价格优化作为的问题来处理,也可以同时优化库存水平和价格,总之其目的是优化收入。线上零售数据分析挖掘
上海暖榕智能科技有限责任公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在上海市等地区的数码、电脑行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**上海暖榕智能科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!